An efficient chromium(iii)-catalyzed aerobic oxidation of methylarenes in water for the green preparation of corresponding acids†
Abstract
A highly efficient method to oxidize methylarenes to their corresponding acids with a reusable Cr catalyst was developed. The reaction can be carried out in water with 1 atm oxygen and K2S2O8 as cooxidants, proceeds under green and mild conditions, and is suitable for the oxidation of both electron-deficient and electron-rich methylarenes, including heteroaryl methylarenes, even at the gram level. The excellent result, together with its simplicity of operation and the ability to continuously reuse the catalyst, makes this new methodology environmentally benign and cost-effective. The generality of this methodology gives it the potential for use on an industrial scale. Differing from the accepted oxidation mechanism of toluene, GC-MS studies and DFT calculations have revealed that the key benzyl alcohol intermediate is formed under the synergetic effect of the chromium and molybdenum in the Cr catalyst, which can be further oxidized to afford benzaldehyde and finally benzoic acid.