A novel colorimetric sensor for naked-eye detection of cysteine and Hg2+ based on “on–off” strategy using Co/Zn-grafted mesoporous silica nanoparticles†
Abstract
In an attempt to explore the significance of inorganic mimetic enzymes as sensors, this study introduces a naked-eye analytical sensing platform for the detection of L-cysteine (cys), mercury ions (Hg2+) based on (turn off/turn–on) catalytic activity of zinc and cobalt grafted mesoporous silica nanoparticles (MSNs). To this end, Zn-MSN and Co/Zn-MSN catalysts were synthesized and characterized using XRD, FT-IR, FESEM, TEM, and nitrogen adsorption–desorption methods. Then, using the intrinsic peroxidase-like activity of as-synthesized samples, the oxidation reactions of the chromogenic substrate (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)) was designed using H2O2, which produced green colored cation radical of ABTS. Considering the high peroxidase-like activity of Co/Zn-MSN in comparison to Zn-MSN, it was employed to detect cys and then Hg2+. The results indicated that the strong interaction between cys and Co/Zn-MSN was proved by a limit of detection (LOD) down to 0.24 nM and the linear relationship from 0.8–50 nM (turn off). Given the fact that Hg2+ has a high-affinity tendency to combine with cys, we were suggested a novel colorimetric path for sensing of Hg2+ in the presence of cys (turn on). Based on this method, LOD was found 0.17 nM with the linear range of 0.57–50 nM. Taken together, results showed that the as-prepared catalysts are superior to other nanoparticles as a sensor to measure the target molecules in biological monitoring and clinical diagnostics.