Issue 40, 2021

Photophysics and reverse saturable absorption of cationic dinuclear iridium(iii) complexes bearing fluorenyl-tethered 2-(quinolin-2-yl)quinoxaline ligands

Abstract

The synthesis, photophysics and reverse saturable absorption of two cationic dinuclear Ir(III) complexes bearing fluorenyl-tethered 2-(quinolin-2-yl)quinoxaline (quqo) ligands are reported in this paper. The two complexes possess intense and featureless diimine ligand localized 1ILCT (intraligand charge transfer)/1π,π* absorption bands at ca. 330 and 430 nm, and a weak 1,3MLCT (metal-to-ligand charge transfer)/1,3LLCT (ligand-to-ligand charge transfer) absorption band at >500 nm. Both complexes exhibit weak dual phosphorescence at ca. 590 nm and 710 nm, which are attributed to the 3ILCT/3π,π* and 3MLCT/3LLCT states, respectively. The low-energy 3MLCT/3LLCT state also gives rise to a moderately strong triplet excited-state absorption at 490–800 nm. Because of the stronger triplet excited-state absorption than the ground-state absorption of these complexes at 532 nm, both complexes manifest a moderate reverse saturable absorption (RSA) at 532 nm for ns laser pulses. Expansion of the π-conjugation of the fluorenyl-tethered diimine ligand in Ir-1 causes a slight red-shift of the 1ILCT/1π,π* absorption bands in its UV-vis absorption spectrum and the 3MLCT/3LLCT absorption band in the transient absorption spectrum and slightly enhances the RSA at 532 nm compared to that in Ir-2. This work represents the first report on dinuclear Ir(III) complexes that exhibit RSA at 532 nm.

Graphical abstract: Photophysics and reverse saturable absorption of cationic dinuclear iridium(iii) complexes bearing fluorenyl-tethered 2-(quinolin-2-yl)quinoxaline ligands

Supplementary files

Article information

Article type
Paper
Submitted
29 Jun 2021
Accepted
06 Sep 2021
First published
07 Sep 2021

Dalton Trans., 2021,50, 14309-14319

Author version available

Photophysics and reverse saturable absorption of cationic dinuclear iridium(III) complexes bearing fluorenyl-tethered 2-(quinolin-2-yl)quinoxaline ligands

C. Lu, T. Lu, P. Cui, S. Kilina and W. Sun, Dalton Trans., 2021, 50, 14309 DOI: 10.1039/D1DT02176A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements