A novel o-vanillin Fe(iii) complex catalytically active in C–H oxidation: exploring the magnetic exchange interactions and spectroscopic properties with different DFT functionals†
Abstract
The novel complex [FeIIICl(L)2(H2O)] (1) was synthesized by interaction of iron(III) chloride with ethanol solution of o-vanillin (HL) and characterized by IR, UV/Vis spectroscopy, thermogravimetry and single crystal X-ray diffraction analysis. The molecules of 1 in the solid state are joined into supramolecular dimeric units, where a set of strong hydrogen bonds predefines the structure of the dimer according to the “key-lock” principle. From the Hirshfield surface analysis the contribution of π⋯π stacking to the overall stabilization of the dimer was found to be negligible. Broken symmetry DFT calculations suggested the presence of long-range antiferromagnetic interactions (J = −0.12 cm−1 for H = −JS1S2 formalism) occurring through the Fe–O⋯O–Fe pathway, as evidenced by the studies of the model dimers where the water molecules were substituted by acetonitrile and acetone ones. The benchmark studies using a set of literature examples and various DFT functionals revealed the hybrid-GGA B3LYP as the best one for prediction of FeIII⋯FeIII antiferromagnetic exchange couplings of small magnitude. Magnetic susceptibility measurements confirmed antiferromagnetic coupling between the metal atoms in 1 with a coupling constant of −0.35 cm−1. Catalytic studies demonstrated that 1 acts as an efficient catalyst in the oxidation of cyclohexane with hydrogen peroxide in the presence of nitric acid promoter and under mild conditions (yield up to 37% based on the substrate), while tert-butylhydroperoxide (TBHP) and m-chloroperoxybenzoic acid (m-CPBA) as oxidants exhibit less efficiency. Combined UV/TDDFT studies evidence the structural rearrangement of 1 in acetonitrile with the formation of [FeIIICl(L)2(CH3CN)] species. The TDDFT benchmark using nine common DFT functionals and two model compounds (o-vanillin and [FeIII(H2O)6]3+ ion) support the hybrid meta-GGA M06-2X functional as the one most correctly predicting the excited state structure for the Fe(III) complexes, under the conditions studied.