Controllable synthesis of Ni3S2@MOOH/NF (M = Fe, Ni, Cu, Mn and Co) hybrid structure for the efficient hydrogen evolution reaction†
Abstract
The design and synthesis of hybrid core–shell catalysts is of great significance for obtaining an excellent performance of hydrogen evolution reaction (HER). However, it remains a challenge to explore the exact active sites and research the catalytic mechanism for HER. Here, a series of Ni3S2@MOOH/NF (M = Fe, Ni, Cu, Mn and Co) hybrid structures is firstly in-site grown on Ni foam by the typical hydrothermal and electrodeposition methods. The Ni3S2@NiOOH/NF catalyst with a core–shell structure exhibits a relatively low overpotential of 79 mV for HER at a current density of 10 mA cm−2, which is one of the best catalytic activities reported so far. Moreover, it also shows good stability in the long-term durability test. Various spectral analysis and density functional theory calculations demonstrate that NiOOH is favorable for the adsorption of water molecules, and the S atom at the interface between Ni3S2 and NiOOH is favorable for the adsorption of H intermediates, which strongly accelerates the HER process in alkaline solution. This work provides a general strategy for the synthesis of electrocatalytic materials, which can be used for efficient electrocatalytic water splitting reactions.