Entrapment of natural compounds in spray-dried and heat-dried iota-carrageenan matrices as functional ingredients in surimi gels
Abstract
Two drying methods (spray drying and heat drying) were used to entrap various natural compounds within a matrix of iota-carrageenan. The natural compounds were, namely, collagen hydrolysate (CH), pomegranate polyphenolic extract (PP) and shrimp lipid extract (SL). The resulting dry powders were compared in terms of water solubility, entrapment efficiency, hydrodynamic particle properties, ζ potential and antioxidant properties (ABTS radical scavenging capacity, ferric ion reducing power and Folin-reactive substances). Dry powders and plain compounds were incorporated into squid surimi gels, and after in vitro simulated gastrointestinal digestion (sGID), the residual antioxidant and angiotensin-converting enzyme (ACE)-inhibitory activities were evaluated. All powders showed antioxidant properties, electronegative ζ potential and great entrapment efficiency after rehydration (ranging from ∼70 to 97%). The heat-dried powders were composed of microparticles ranging from 177 to 380 μm resulting in low water solubility (21.6–36.1%), while the average particle size and solubility values of spray-dried preparations were 2.9–13.2 μm and >86%, respectively. In contrast to the plain compounds, the addition of any of the microparticle dried preparations allowed obtaining well-conformed surimi gels. The ACE-inhibitory capacity of the surimi gels after sGID was increased by the addition of any of the compounds studied, but to a lesser extent by their entrapment forms (except with the entrapped SL). The antioxidant activities of gels with the entrapped compounds were even lower than those of gels without bioactives in some cases. In conclusion, the addition of dried microparticles did not increase the biological activity as compared to the plain compounds; however, they were beneficial to ensure adequate gel consistency.