Issue 13, 2021

Benzyl isothiocyanates modulate inflammation, oxidative stress, and apoptosis via Nrf2/HO-1 and NF-κB signaling pathways on indomethacin-induced gastric injury in rats

Abstract

The present study investigated the gastroprotective activity of benzyl isothiocyanates (BITC) on indomethacin (IND)-induced gastric injury in a rat model and explicated the possible involved biochemical, cellular, and molecular mechanisms. The rat model with gastric ulcers was established by a single oral dose of IND (30 mg per kg b.wt). BITC (0.75 and 1.5 mg kg−1) and esomeprazole (20 mg per kg b.wt) were orally administered for 3 weeks to rats before the induction of gastric injury. Compared with the IND group, BITC could diminish both the macroscopic and microscopic pathological morphology of gastric mucosa. BITC significantly preserved the antioxidants (glutathione GSH, superoxide dismutase SOD), nitric oxide (NO), and prostaglandin E2 (PGE2) contents, while decreasing the gastric mucosal malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), and myeloperoxidase (MPO) contents. Moreover, BITC remarkably upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemoxygenase-1 (HO-1), and NAD(P)H : quinone oxidoreductase (NQO1). In addition, BITC activates the expression of heat shock protein 70 (HSP-70) and downregulated the expression of nuclear factor-κB (NF-κB) and caspase-3 to promote gastric mucosal cell survival. To the best of our knowledge, this study is the first published report to implicate the suppression of inflammation, oxidative stress, and Nrf2 signaling pathway as a potential mechanism for the gastroprotective activity of BITC.

Graphical abstract: Benzyl isothiocyanates modulate inflammation, oxidative stress, and apoptosis via Nrf2/HO-1 and NF-κB signaling pathways on indomethacin-induced gastric injury in rats

Article information

Article type
Paper
Submitted
01 Mar 2021
Accepted
07 May 2021
First published
07 May 2021

Food Funct., 2021,12, 6001-6013

Benzyl isothiocyanates modulate inflammation, oxidative stress, and apoptosis via Nrf2/HO-1 and NF-κB signaling pathways on indomethacin-induced gastric injury in rats

S. A. El Badawy, H. A. Ogaly, R. M. Abd-Elsalam and A. A. Azouz, Food Funct., 2021, 12, 6001 DOI: 10.1039/D1FO00645B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements