Issue 6, 2021

Amoeba-inspired reengineering of polymer networks

Abstract

Some living organisms such as amoebas and slime molds have the capability to reengineer their bodies freely by undergoing out-of-equilibrium events. By contrast, synthetic materials usually have fixed structures, properties and functions once synthesized, and it remains challenging to reengineer these materials arbitrarily. Inspired by the habits of amoebas, here we report the fuel-driven reengineering of covalent adaptable polymer networks into multifunctional materials. The sugar-fueled production of carbon dioxide mediated by a microbial metabolism process is used to program a temporary pH change in borate ester bond-based polymer hydrogels, thereby regulating the repeatable formation of transient sols with a tunable lifetime. Diversified properties and functions including reshapability, mobility, fission-fusion ability, outstanding mechanical properties, remarkable acid resistance, magnetic responsiveness, self-recoverable electrical conductivity, and impressive low-temperature strain sensitivity can be obtained via the fuel-driven transient liquefaction of hydrogels, which essentially profit from either the intrinsic fluidity of the transient sols or the engulfment of extrinsic functional molecules and nanomaterials, reminiscent of the functions of amoebas’ pseudopods.

Graphical abstract: Amoeba-inspired reengineering of polymer networks

Supplementary files

Article information

Article type
Paper
Submitted
21 Jan 2021
Accepted
25 Feb 2021
First published
25 Feb 2021

Green Chem., 2021,23, 2496-2506

Amoeba-inspired reengineering of polymer networks

Y. Zhong, P. Li, X. Wang and J. Hao, Green Chem., 2021, 23, 2496 DOI: 10.1039/D1GC00232E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements