Issue 4, 2021

FertDish: microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection

Abstract

The selection of high quality sperm is critical for intracytoplasmic sperm injection (ICSI), a prevalent assisted reproduction technology. However, standard selection methods are time-consuming and fail to recover the most viable sperm, thereby limiting the ICSI success rate. Microfluidics enables rapid selection of viable sperm in a manner representing in vivo processes, however, existing platforms lack clinical applicability. Here, we present FertDish, which integrates the clinically established ICSI Petri dish with a film featuring an array of sperm-selecting microchannels for selection of sperm directly from semen. The FertDish format mimics the clinician-familiar ICSI dish setup, and provides rapid (<10 min) single stage sperm preparation that circumvents standard labour-intensive multi-stage sperm processing steps. Tests with human donor and patient semen samples show that FertDish enables the selection of a high quality sperm sub-population, featuring improvements in DNA fragmentation index of more than 91% (donor) and 74% (patient) versus raw semen and 50% (donor) and 63% (patient) versus standard methods, and a distribution of more than 97% sperm with viable and high level DNA. The FertDish enables a high sperm recovery rate (>3.3 × 105 sperm per mL), and is readily adaptable to the clinical workflow with potential to improve ICSI outcomes.

Graphical abstract: FertDish: microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection

Supplementary files

Article information

Article type
Paper
Submitted
27 Aug 2020
Accepted
25 Jan 2021
First published
28 Jan 2021

Lab Chip, 2021,21, 775-783

FertDish: microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection

S. Xiao, J. Riordon, M. Simchi, A. Lagunov, T. Hannam, K. Jarvi, R. Nosrati and D. Sinton, Lab Chip, 2021, 21, 775 DOI: 10.1039/D0LC00874E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements