Issue 3, 2021

Microfluidic-based capture and release of cancer-derived exosomes via peptide–nanowire hybrid interface

Abstract

Cancer-derived circulating exosomes or nanoscale extracellular vesicles are emerging biomarkers for disease detection and treatment because of their cell-specific constituents and unique intercellular pathways. For efficient exosome isolation from bio-fluids, the design of high-affinity nanointerfaces is of great importance in the development of miniaturized systems for the collection of exosomes. Herein, we report peptide-functionalized nanowires as a biorecognition interface for the capture and release of cancer-derived exosomes within a microfluidic channel. Based on the amino-acid sequence of EWI-2 protein, a partial peptide that bound to the CD9 exosome marker and thus targeted cancer exosomes was screened. Linkage of the exosome-targeting peptide with a ZnO-binding sequence allowed one-step and reagent-free peptide modification of the ZnO nanowire array. As a result of peptide functionalization, the exosome-capturing ability of ZnO nanowires was significantly improved. Furthermore, the captured exosomes could be subsequently released from the nanowires under a neutral salt condition for downstream applications. This engineered surface that enhances the nanowires' efficiency in selective and controllable collection of cancer-derived exosomes provides an alternative foundation for developing microfluidic platforms for exosome-based diagnostics and therapeutics.

Graphical abstract: Microfluidic-based capture and release of cancer-derived exosomes via peptide–nanowire hybrid interface

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2020
Accepted
11 Dec 2020
First published
24 Dec 2020

Lab Chip, 2021,21, 597-607

Author version available

Microfluidic-based capture and release of cancer-derived exosomes via peptide–nanowire hybrid interface

T. Suwatthanarak, I. A. Thiodorus, M. Tanaka, T. Shimada, D. Takeshita, T. Yasui, Y. Baba and M. Okochi, Lab Chip, 2021, 21, 597 DOI: 10.1039/D0LC00899K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements