Issue 21, 2021

Non-invasive and label-free identification of human natural killer cell subclasses by biophysical single-cell features in microfluidic flow

Abstract

Natural killer (NK) cells are indicated as favorite candidates for innovative therapeutic treatment and are divided into two subclasses: immature regulatory NK CD56bright and mature cytotoxic NK CD56dim. Therefore, the ability to discriminate CD56dim from CD56bright could be very useful because of their higher cytotoxicity. Nowadays, NK cell classification is routinely performed by cytometric analysis based on surface receptor expression. Here, we present an in-flow, label-free and non-invasive biophysical analysis of NK cells through a combination of light scattering and machine learning (ML) for NK cell subclass classification. In this respect, to identify relevant biophysical cell features, we stimulated NK cells with interleukine-15 inducing a subclass transition from CD56bright to CD56dim. We trained our ML algorithm with sorted NK cell subclasses (≥86% accuracy). Next, we applied our NK cell classification algorithm to cells stimulated over time, to investigate the transition of CD56bright to CD56dim and their biophysical feature changes. Finally, we tested our approach on several proband samples, highlighting the potential of our measurement approach. We show a label-free way for the robust identification of NK cell subclasses based on biophysical features, which can be applied in both cell biology and cell therapy.

Graphical abstract: Non-invasive and label-free identification of human natural killer cell subclasses by biophysical single-cell features in microfluidic flow

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2021
Accepted
02 Sep 2021
First published
03 Sep 2021

Lab Chip, 2021,21, 4144-4154

Non-invasive and label-free identification of human natural killer cell subclasses by biophysical single-cell features in microfluidic flow

D. Dannhauser, D. Rossi, A. T. Palatucci, V. Rubino, F. Carriero, G. Ruggiero, M. Ripaldi, M. Toriello, G. Maisto, P. A. Netti, G. Terrazzano and F. Causa, Lab Chip, 2021, 21, 4144 DOI: 10.1039/D1LC00651G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements