Issue 5, 2021

Silicon oxycarbonitride ceramic containing nickel nanoparticles: from design to catalytic application

Abstract

Nickel-containing silicon oxycarbonitride ceramic nanocomposites are synthesized from hydrous nickel acetate and poly(vinyl)silazane (Durazane 1800) or perhydropolysilazane NN120-20 (A) (PHPS). A room temperature chemical reaction results in Ni-containing polysilazane precursors which are transformed into ceramic nanocomposites with nickel nanoparticles (2–4 nm) upon pyrolysis at elevated temperatures (700–1100 °C) under an argon atmosphere. The ceramic nanocomposites derived from the Durazane 1800-Ni precursor by the thermolysis process at 700 and 900 °C manifest a microporous structure with a BET specific surface area of ∼361 and ∼232 m2 g−1, respectively. In contrast, all pyrolyzed samples derived from the PHPS-Ni precursor exhibit a nonporous structure. The Ni/SiOCN ceramic nanocomposites – tested in a plug-flow fixed-bed reactor – display significant catalytic activity in dry methane reforming to syngas. The highest CH4 reaction rate of 0.18 mol min−1 gNi−1 is observed at 800 °C for the sample derived from the PHPS-Ni precursor by pyrolysis at 900 °C. All these make the materials developed in this work, i.e. nickel nanoparticles in situ formed in the SiOCN ceramic matrix, as promising candidates for heterogeneous catalysis.

Graphical abstract: Silicon oxycarbonitride ceramic containing nickel nanoparticles: from design to catalytic application

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2020
Accepted
24 Jan 2021
First published
25 Jan 2021
This article is Open Access
Creative Commons BY license

Mater. Adv., 2021,2, 1715-1730

Silicon oxycarbonitride ceramic containing nickel nanoparticles: from design to catalytic application

J. Wang, A. Gili, M. Grünbacher, S. Praetz, J. D. Epping, O. Görke, G. Schuck, S. Penner, C. Schlesiger, R. Schomäcker, A. Gurlo and M. F. Bekheet, Mater. Adv., 2021, 2, 1715 DOI: 10.1039/D0MA00917B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements