Issue 11, 2021

Zero-dimensional plate-shaped copper halide crystals with green-yellow emissions

Abstract

Low-cost and eco-friendly metal hybrid materials with zero-dimensional (0D) structures have recently attracted increasing attention owing to their excellent optical properties and wide applications. However, successful examples of 0D structural OIMHs with well-defined dimensions are still quite limited. Here, plate-shaped copper-based halide hybrids, (DTA)2Cu2I4, with 0D structures were successfully prepared by the employment of long alkyl chain molecules. The crystallization features were characterized by X-ray diffraction, and further investigated by theoretical simulations. The investigation on the photophysical properties indicates that 0D crystals show a broadband emission peak at ∼540 nm with a high PLQY of 60%, a long lifetime of 1.84 μs and a large Stokes shift of 210 nm under photo-excitation. The broad emission should be attributed to the self-trapping excitons as determined by the joint experiment-density functional theory studies. Also, the high optical performance and stability endow (DTA)2Cu2I4 with the potential for lighting phosphors by fabricating a white light-emitting diode (WLED) device. Importantly, bright PL at the edge of the plate-shaped crystal was observed, suggesting a typical waveguide behavior in a 2D system. These results validate these 2D crystals as promising luminescent materials for potential optical communication micro-devices.

Graphical abstract: Zero-dimensional plate-shaped copper halide crystals with green-yellow emissions

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2021
Accepted
07 Apr 2021
First published
08 Apr 2021
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2021,2, 3744-3751

Zero-dimensional plate-shaped copper halide crystals with green-yellow emissions

F. Liu, D. Mondal, K. Zhang, Y. Zhang, K. Huang, D. Wang, W. Yang, P. Mahadevan and R. Xie, Mater. Adv., 2021, 2, 3744 DOI: 10.1039/D1MA00061F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements