Issue 22, 2021

Mechanisms for doped PEDOT:PSS electrical conductivity improvement

Abstract

Due to their good electrical conductivity and versatility, conductive polymers (CPs), in particular, poly(3,4-ethylene dioxythiophene) (PEDOT):poly(styrene sulphonate) (PSS), have recently attracted considerable research interest in bioelectronics applications. This study provides insight into the mechanisms in PEDOT:PSS for increasing electrical conductivity. As such, the preparation of doped PEDOT:PSS using distinctive approaches, such as undergoing treatment and using secondary dopants is focused primarily on improving its electrical efficiency. It also systematically addresses various primary parameters that have significant effects on its conductivity. We present the potential of doped PEDOT:PSS for many promising applications in fields such as bioelectronics, through an in-depth analysis of the most remarkable studies recorded by various research groups over the past decade. Therefore, this review is expected to be significantly helpful in promoting further studies, as well as paving the way for increased qualification and productivity for future revolutions of organic CP materials.

Graphical abstract: Mechanisms for doped PEDOT:PSS electrical conductivity improvement

Article information

Article type
Review Article
Submitted
31 Mar 2021
Accepted
06 Sep 2021
First published
07 Sep 2021
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2021,2, 7118-7138

Mechanisms for doped PEDOT:PSS electrical conductivity improvement

N. A. Shahrim, Z. Ahmad, A. Wong Azman, Y. Fachmi Buys and N. Sarifuddin, Mater. Adv., 2021, 2, 7118 DOI: 10.1039/D1MA00290B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements