Manipulating atomic defects in plasmonic vanadium dioxide for superior solar and thermal management†
Abstract
Vanadium dioxide (VO2) is a unique active plasmonic material due to its intrinsic metal–insulator transition, remaining less explored. Herein, we pioneer a method to tailor the VO2 surface plasmon by manipulating its atomic defects and establish a universal quantitative understanding based on seven representative defective VO2 systems. Record high tunability is achieved for the localized surface plasmon resonance (LSPR) energy (0.66–1.16 eV) and transition temperature range (40–100 °C). The Drude model and density functional theory reveal that the charge of cations plays a dominant role in the numbers of valence electrons to determine the free electron concentration. We further demonstrate their superior performances in extensive unconventional plasmonic applications including energy-saving smart windows, wearable camouflage devices, and encryption inks.