Cucurbituril-activated photoreaction of dithienylethene for controllable targeted lysosomal imaging and anti-counterfeiting†
Abstract
Supramolecular macrocycle-mediated photoreaction has been a research hotspot recently. Herein, we fabricated a photo-responsive intelligent supramolecular assembly that consisted of a water-soluble dithienylethene derivative (DTE-MPBT) and cucurbit[n]urils (CB[n]). Importantly, CB[n], especially CB[8], could act as activators and trigger conformational alteration of the arm parts (typical molecular rotors) of DTE-MPBT, achieving dual functions, i.e. high-efficiency visible-light-cyclization reaction of the DTE core and fluorescence enhancement of DTE-MPBT, resulting in the formation of a dual visible light-driven fluorescent switch. These unexpected discoveries prompted the supramolecular assembly to be applied to dual-visible-light-controlled targeted lysosomal imaging and QR code information recognition. Moreover, the solid-state assembly exhibited more outstanding fluorescence and visible-light-switched fluorescence performance because of the host–guest-induced aggregation synergistic effect, showing fascinating applications, such as light-manipulative data storage and anti-counterfeiting. In brief, we unprecedentedly adopted a supramolecular strategy of “killing two birds with one stone”, i.e. assembly-activated photochromism (AAP) and assembly-activated emission enhancement (AAEE), to fabricate dual-visible-light-driven fluorescent switches, which show promising application prospects in biomimetic smart nanomaterials based on supramolecular self-assembly systems.