Issue 9, 2021

All-lignin converted graphene quantum dot/graphene nanosheet hetero-junction for high-rate and boosted specific capacitance supercapacitors

Abstract

The high value-added conversion of biomass lignin has been paramount in the field of lignin utilization, especially for high performance energy conversion and storage devices. A majority of lignin-based supercapacitors generally exhibit inferior electrochemical performance with low capacitance and slow diffusion kinetics due to the poor interfacial compatibility, low conductivity, and uncontrollable morphology. Herein, we designed all-lignin converted graphene quantum dot and graphene sheet (GQD/Gr) hetero-junction for simultaneous fast charging and boosted specific capacitance. The conversion from lignin to GQDs and then refusion into graphene allows the in situ growth of GQDs on graphene, endowing good interfacial compatibility with the GQD/Gr hetero-junction. Furthermore, both GQDs and graphene sheets exhibit highly crystalline structure with obvious graphene lattice, giving GQDs/Gr good conductivity. GQDs play an additive role for avoiding stacks and agglomerates between graphene layers, which endow the assembled GQDs/Gr with massive electron capacitive sites and more hierarchical channels. Therefore, the GQD/Gr hetero-junction gives rise to a high specific capacitance of 404.6 F g−1 and a short charging time constant (τ0) of 0.3 s, 2.5 times higher and 7.5 times faster than that of the unmodified lignin electrode with 162 F g−1 and 2.3 s, respectively. This proposed strategy could offer the opportunity to unblock the critical roadblocks for a superior electrochemical performance lignin-based supercapacitor by composing a 0D/2D GQD/Gr hetero-junction system and also paves a bright way for the high-value industrial lignin conversion into cheap, scalable, and high-performance electrochemical energy devices.

Graphical abstract: All-lignin converted graphene quantum dot/graphene nanosheet hetero-junction for high-rate and boosted specific capacitance supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2020
Accepted
05 Mar 2021
First published
05 Mar 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2021,3, 2529-2537

All-lignin converted graphene quantum dot/graphene nanosheet hetero-junction for high-rate and boosted specific capacitance supercapacitors

Z. Ding, X. Mei and X. Wang, Nanoscale Adv., 2021, 3, 2529 DOI: 10.1039/D0NA01024C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements