Rapid gram-scale synthesis of Au/chitosan nanoparticles catalysts using solid mortar grinding†
Abstract
Owing to the abundant functional groups present in the chitosan polymer, high density catalytic tiny gold particles with greater dispersion can be anchored on the chitosan powder using simple mortar and pestle. Chitosan-supported gold nanoparticles (NPs) with excellent control of size and shape were rapidly synthesized in gram-scale by solid-grinding without the need of any toxic solvents. The structure of catalysts and products was established by advanced instrumental and spectroscopic methods. The supported gold NPs functions as a heterogeneous catalyst for the homocoupling of phenylboronic acid and the aerobic oxidation of benzyl alcohol in water. The catalytic behaviour and activity of supported gold NPs was tuned/modulated by varying the ratio of chitosan polymer and gold precursor. Comparative studies showed that the solid chitosan supported gold catalyst exhibits superior catalytic activity and selectivity than the well known hydrophilic polymer-stabilized gold NPs catalysts prepared by the conventional solution-based methods.