Issue 3, 2021

Thermo-mechanical correlation in two-dimensional materials

Abstract

Two-dimensional (2D) materials have received tremendous attention from the research community in the past decades, because of their numerous striking physical, chemical and mechanical properties and promising potential in a wide range of applications. This field is strongly interdisciplinary, requiring efficient integration of knowledge with different insights. In this review, we summarize the up-to-date research on the thermal and mechanical properties and thermo-mechanical correlation in 2D materials, including both theoretical and experimental insight. Firstly, the mechanical properties of 2D nanomaterials are discussed, in which the underlying physics is summarized. Then, we discuss the impacts of thermal fluctuation on the mechanical properties. Next, from experimental points of view, we present the methods to introduce strain in 2D materials experimentally and the experimental tools to measure the degree of strain. Finally, we discuss the fundamental phonon and thermal properties of 2D materials, including the strain effects on phonon dispersion, phonon hydrodynamic behavior, phonon topological feature, ballistic thermal conductance and diffusive thermal conductivity. This article presents an advanced understanding of the mechanical and thermal properties of 2D materials, which provides new opportunities for promoting their applications in nanoscale electronic, optoelectronic, and thermal functional devices.

Graphical abstract: Thermo-mechanical correlation in two-dimensional materials

Article information

Article type
Review Article
Submitted
23 Sep 2020
Accepted
17 Dec 2020
First published
17 Dec 2020

Nanoscale, 2021,13, 1425-1442

Thermo-mechanical correlation in two-dimensional materials

Y. Cheng, X. Wu, Z. Zhang, Y. Sun, Y. Zhao, Y. Zhang and G. Zhang, Nanoscale, 2021, 13, 1425 DOI: 10.1039/D0NR06824A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements