Issue 1, 2021

Tailored synthesis approach of (Mo2/3Y1/3)2AlC i-MAX and its two-dimensional derivative Mo1.33CTz MXene: enhancing the yield, quality, and performance in supercapacitor applications

Abstract

A vacancy-ordered MXene, Mo1.33CTz, obtained from the selective etching of Al and Sc from the parent i-MAX phase (Mo2/3Sc1/3)2AlC has previously shown excellent properties for supercapacitor applications. Attempts to synthesize the same MXene from another precursor, (Mo2/3Y1/3)2AlC, have not been able to match its forerunner. Herein, we show that the use of an AlY2.3 alloy instead of elemental Al and Y for the synthesis of (Mo2/3Y1/3)2AlC i-MAX, results in a close to 70% increase in sample purity due to the suppression of the main secondary phase, Mo3Al2C. Furthermore, through a modified etching procedure, we obtain a Mo1.33CTz MXene of high structural quality and improve the yield by a factor of 6 compared to our previous efforts. Free-standing films show high volumetric (1308 F cm−3) and gravimetric (436 F g−1) capacitances and a high stability (98% retention) at the level of, or even beyond, those reported for the Mo1.33CTz MXene produced from the Sc-based i-MAX. These results are of importance for the realization of high quality MXenes through use of more abundant elements (Y vs. Sc), while also reducing waste (impurity) material and facilitating the synthesis of a high-performance material for applications.

Graphical abstract: Tailored synthesis approach of (Mo2/3Y1/3)2AlC i-MAX and its two-dimensional derivative Mo1.33CTz MXene: enhancing the yield, quality, and performance in supercapacitor applications

Supplementary files

Article information

Article type
Paper
Submitted
01 Oct 2020
Accepted
01 Dec 2020
First published
09 Dec 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2021,13, 311-319

Tailored synthesis approach of (Mo2/3Y1/3)2AlC i-MAX and its two-dimensional derivative Mo1.33CTz MXene: enhancing the yield, quality, and performance in supercapacitor applications

J. Halim, A. S. Etman, A. Elsukova, P. Polcik, J. Palisaitis, M. W. Barsoum, P. O. Å. Persson and J. Rosen, Nanoscale, 2021, 13, 311 DOI: 10.1039/D0NR07045A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements