Few-layer In4/3P2Se6 nanoflakes for high detectivity photodetectors†
Abstract
Metal phosphorus trichalcogenides (MPX3) have attracted extensive attention as promising two-dimensional (2D) layered materials in future electronic and optoelectronic devices. Here, for the first time, few-layer In4/3P2Se6 nanoflakes have been successfully exfoliated from home-made high-quality single crystals. The In4/3P2Se6 crystal belongs to the R3 space group, and possesses a weak van der Waals force between the adjacent layers and a direct bandgap of 1.99 eV. Furthermore, the In4/3P2Se6-based photodetectors show high performances in the visible light region, such as a high responsivity (R) of 4.93 A·W−1, a high external quantum efficiency (EQE) of 1509% and a fast response time, as low as 2.1 ms. In particular, the high detectivity (D) of the devices can reach up to 4.3 × 1013 Jones (light ON/OFF ratio ≈104) under illumination from a 405 nm light at a bias voltage of 1 V, which is favoured by the ultralow dark current (∼100 fA). These excellent performances pave the way for the implementation of In4/3P2Se6 nanoflakes as promising candidates for future optoelectronic detection applications.