A polymer-coated template-confinement CsPbBr3 perovskite quantum dot composite†
Abstract
Metal halide perovskites show abundant photophysical properties and great potential in photovoltaic and electroluminescence devices, but their poor stability is an obvious shortcoming. Here, we successfully synthesized polymer-coated CsPbBr3 quantum dots (QDs) grown in situ on a template. Conjugated linoleic acid (CLA) is used as a ligand to passivate the surface defects of QDs. QDs can be used as photoinitiators in polymerization to initiate CLA crosslinking under illumination, thereby forming polymer coatings to improve the stability of QDs. The mesoporous silica microspheres are used as templates to make CsPbBr3 QDs grow in situ in the pores and avoid the size growth and agglomeration of QDs. The obtained composite material has a narrow full width at half maximum and an absolute photoluminescence quantum yield of 79.16%. Due to the protection of the hydrophobic polymer layer, it can still maintain 77% of the photoluminescence intensity after soaking in water for a week.