Cocrystallization-driven stabilization of metastable nanoclusters: a case study of Pd1Au9†
Abstract
The structural determination of metastable nanoclusters remains challenging, which impedes the in-depth understanding of their structural evolution. Herein, based on a case study of Pd1Au9, we present a “cocrystallization-driven stabilization” approach to stabilize the metastable nanocluster and then determine its atomically precise structure. The [Pd1Au9(TFPP)7Br2]+ nanocluster is unstable in solution and would spontaneously convert to Pd2Au23(TFPP)10Br7. The introduction of Au11(TFPP)7Br3 nanocluster to the crystallization process of [Pd1Au9(TFPP)7Br2]+ gives rise to the cocrystallized Pd1Au9(TFPP)6Br3@Au11(TFPP)7Br3, although the composition of Pd1Au9 changes from [Pd1Au9(TFPP)7Br2]+ to Pd1Au9(TFPP)6Br3 among this cocrystallization. With this approach, the overall structure of the metastable Pd1Au9 has been determined. Owing to the very similar cluster size and surface ligand environment between Au11 and Pd1Au9, the obtained Pd1Au9@Au11 cocrystal exhibits almost the same cell parameters as those of the single crystalized Au11. Overall, the proposed “cocrystallization-driven stabilization” approach hopefully sheds light on the structural determination of more metastable nanoclusters.