Polarization-dependent optical band gap energy of aligned semiconducting titanium oxide nanowire deposits†
Abstract
Thin deposits of aligned semiconducting titanium oxide and of zinc oxide nanowires are prepared by grazing incidence spraying on transparent substrates. By measuring the transmittance of linearly polarized light of these anisotropic assemblies as compared to that of randomly oriented nanowires and of spherical nanoparticles, we find that titanium oxide nanowires exhibit an orientation-dependent variation of the apparent optical band gap energy at room temperature (>100 meV), depending on the direction of the polarization of the light with respect to the direction of alignment of the nanowires.