Issue 25, 2021

Ultrafast switching and linear conductance modulation in ferroelectric tunnel junctions via P(VDF-TrFE) morphology control

Abstract

Neuromorphic computing architectures demand the development of analog, non-volatile memory components operating at femto-Joule/bit operation energy. Electronic components working in this energy range require devices operating at ultrafast timescales. Among different non-volatile, analog memories, ferroelectric tunnel junctions (FTJs) have emerged as an important contender due to their voltage-driven operation leading to extreme energy-efficiency. Here, we report a study on the switching timescale and linear conductance modulation of organic FTJs comprising a metal/ferroelectric/semiconductor (MFS) stack with different morphologies of ferroelectric copolymer P(VDF-TrFE) ultrathin films. The results show that due to different annealing temperatures and protocols, the spin-coated copolymer films are modified significantly, which can have a large effect on the switching timescales and threshold fields of the FTJs with the best quality devices having a projected switching timescale of sub-nanosecond range. An improvement in switching speed by 7 orders of magnitude can be obtained with an increase of the programming voltage by less than a factor of 2 in these devices. This ultrafast switching of ferroelectric domains in our FTJs leads to pico to femto joule range of operation energy per bit opening the pathways for energy efficient and fast operating non-volatile memories while devices with higher domain pinning sites show a route for tuning analog conductivity for bio-realistic neuromorphic architectures.

Graphical abstract: Ultrafast switching and linear conductance modulation in ferroelectric tunnel junctions via P(VDF-TrFE) morphology control

Supplementary files

Article information

Article type
Paper
Submitted
18 Mar 2021
Accepted
31 May 2021
First published
31 May 2021
This article is Open Access
Creative Commons BY-NC license

Nanoscale, 2021,13, 11270-11278

Ultrafast switching and linear conductance modulation in ferroelectric tunnel junctions via P(VDF-TrFE) morphology control

S. Majumdar, Nanoscale, 2021, 13, 11270 DOI: 10.1039/D1NR01722E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements