Wide-area multilayered self-assembly of fluorapatite nanorods vertically oriented on a substrate as a non-classical crystal growth†
Abstract
Oriented attachment of homogeneously shaped nanoblocks, such as nanocubes and nanorods, is attracting attention as a fundamental process of non-classical crystal growth to produce specific ordered architectures of functional materials. Although lateral alignments of horizontally oriented nanorod are commonly observed at the air–liquid and liquid–solid interfaces in dispersion systems, the accumulation of vertically oriented nanorods on a substrate has rarely been produced in a wide area over a millimeter-sized flat surface. Here, we achieved homogeneous stacking of vertical fluorapatite nanorods with a large aspect ratio (∼6) in a toluene–hexane mixture system through a gradual decrease in the dispersibility. Micrometer-thick flat films in which the c direction of fluorapatite nanorods was arranged perpendicularly to the surface were deposited on a substrate with a diameter of over 20 mm. The wide-area accumulation of vertical nanorods occurs through the self-assembly of laterally arranged clusters of nanorods covered with a stabilizing agent and subsequent gentle sedimentation on the substrate surface.