Issue 28, 2021

A silicon-based PbSe quantum dot near-infrared photodetector with spectral selectivity

Abstract

Traditional photodetectors usually respond to photons larger than the bandgap of a photosensitive material. In contrast to traditional photodetectors for broad-spectrum detection, the currently reported PbS/PMMA/PbSe CQD silicon-based photodetectors can detect spectrally selective light sources. This is attributed to two layers with specific functions, a filter layer on top and a photosensitive layer in contact with the silicon channel. Each of the target sources of the device has a selectivity factor of more than 10 against non-target sources. The s-PD (selective photodetector) has three significant advantages: the ability to tunably adjust the detectable spectral range by easily adjusting the size of QDs. The second is using a new architecture to achieve a high-performance selective photodetector, and finally, the ease-of-integration with silicon. The above features enable the device to meet the needs of particular fields such as secure communication, surveillance, and infrared imaging.

Graphical abstract: A silicon-based PbSe quantum dot near-infrared photodetector with spectral selectivity

Article information

Article type
Paper
Submitted
01 Apr 2021
Accepted
17 Jun 2021
First published
21 Jun 2021

Nanoscale, 2021,13, 12306-12313

A silicon-based PbSe quantum dot near-infrared photodetector with spectral selectivity

Y. Shi, Z. Wu, X. Dong, P. Chen, J. Wang, J. Yang, Z. Xiang, M. Shen, Y. Zhuang, J. Gou, J. Wang and Y. Jiang, Nanoscale, 2021, 13, 12306 DOI: 10.1039/D1NR02037D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements