Issue 28, 2021

Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries

Abstract

Although vanadium (V)-based sulfides have been investigated as cathodes for aqueous zinc-ion batteries (ZIBs), the performance improvement and the intrinsic zinc-ion (Zn2+) storage mechanism revelation is still challenging. Here, VS4@rGO composite with optimized morphology is designed and exhibits ultrahigh specific capacity (450 mA h g−1 at 0.5 A g−1) and high-rate capability (313.8 mA h g−1 at 10 A g−1) when applied as cathode material for aqueous ZIBs. Furthermore, the VS4@rGO cathode presents long-life cycling stability with capacity retention of ∼82% after 3500 cycles at 10 A g−1. The structural evolution, redox, and degradation mechanisms of VS4 during (dis)charge processes are further probed by in situ XRD/Raman techniques and TEM analysis. Our results indicate that the main energy storage mechanism is derived from the intercalation/deintercalation reactions in the open channels of VS4. Notably, an irreversible phase transition of VS4 into Zn3(OH)2V2O7·2H2O (ZVO) during the charging process and the further transition from ZVO to ZnV3O8 during long-term cycles are also observed, which might be the main reason leading to the capacity degradation of VS4@rGO. Our study further improves the electrochemical performance of VS4 in aqueous ZIBs through morphology design and provides new insights into the energy storage and performance degradation mechanisms of Zn2+ storage in VS4, and thus may endow the large-scale application of V-based sulfides for energy storage systems.

Graphical abstract: Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2021
Accepted
29 Jun 2021
First published
30 Jun 2021

Nanoscale, 2021,13, 12370-12378

Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries

K. Chen, X. Li, J. Zang, Z. Zhang, Y. Wang, Q. Lou, Y. Bai, J. Fu, C. Zhuang, Y. Zhang, L. Zhang, S. Dai and C. Shan, Nanoscale, 2021, 13, 12370 DOI: 10.1039/D1NR02158C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements