Issue 26, 2021

Group 13 Lewis acid catalyzed synthesis of metal oxide nanocrystals via hydroxide transmetallation

Abstract

A new transmetallation approach is described for the synthesis of metal oxide nanocrystals (NCs). Typically, the synthesis of metal oxide NCs in oleyl alcohol is driven by metal-based esterification catalysis with oleic acid to produce oleyl oleate ester and M-OH monomers, which then condense to form MxOy solids. Here we show that the synthesis of Cu2O NCs by this method is limited by the catalytic ability of copper to drive esterification and thus produce Cu+-OH monomers. However, inclusion of 1–15 mol% of a group 13 cation (Al3+, Ga3+, or In3+) results in efficient synthesis of Cu2O NCs and exhibits size/morphology control based on the nature of M3+. Using a continuous-injection procedure where the copper precursor (Cu2+-oleate) and catalyst (M3+-oleate) are injected into oleyl alcohol at a controlled rate, we are able to monitor the reactivity of the precursor and M3+ catalyst using UV-visible and FTIR absorbance spectroscopies. These time-dependent measurements clearly show that M3+ catalysts drive esterification to produce M3+-OH species, which then undergo transmetallation of hydroxide ligands to generate Cu+-OH monomers required for Cu2O condensation. Ga3+ is found to be the “goldilocks” catalyst, producing NCs with the smallest size and a distinct cubic morphology not observed for any other group 13 metal. This is believed to be due to rapid transmetallation kinetics between Ga3+-OH and Cu+-oleate. These studies introduce a new mechanism for the synthesis of metal oxides where inherent catalysis by the parent metal (i.e. copper) can be circumvented with the use of a secondary catalyst to generate hydroxide ligands.

Graphical abstract: Group 13 Lewis acid catalyzed synthesis of metal oxide nanocrystals via hydroxide transmetallation

Supplementary files

Article information

Article type
Paper
Submitted
15 Apr 2021
Accepted
17 Jun 2021
First published
22 Jun 2021

Nanoscale, 2021,13, 11505-11517

Author version available

Group 13 Lewis acid catalyzed synthesis of metal oxide nanocrystals via hydroxide transmetallation

N. J. Gibson, A. R. C. Bredar, N. Chakraborty and B. H. Farnum, Nanoscale, 2021, 13, 11505 DOI: 10.1039/D1NR02397G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements