Issue 30, 2021

Interaction of serum proteins with SARS-CoV-2 RBD

Abstract

The outbreak of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a worldwide public health crisis. When the SARS-CoV-2 enters the biological fluids in the human body, different types of biomolecules (in particular proteins) may adsorb on its surface and alter its infection ability. Although great efforts have recently been devoted to the interaction of specific antibodies with the SARS-CoV-2, it still remains largely unknown how the other serum proteins affect the infection of the SARS-CoV-2. In this work, we systematically investigate the interaction of serum proteins with the SARS-CoV-2 RBD by molecular docking and all-atom molecular dynamics simulations. It is found that non-specific immunoglobulins (Ig) indeed cannot effectively bind to the SARS-CoV-2 RBD while human serum albumin (HSA) may have some potential in blocking its infection (to ACE2). More importantly, we find that the RBD can cause significant structural changes in Apolipoprotein E (ApoE), by which SARS-CoV-2 may hijack the metabolic pathway of ApoE to facilitate its cell entry. The present study enhances the understanding of the role of protein corona in the bio-behaviors of SARS-CoV-2, which may aid the more precise and personalized treatment for COVID-19 infection in the clinic.

Graphical abstract: Interaction of serum proteins with SARS-CoV-2 RBD

Supplementary files

Article information

Article type
Paper
Submitted
28 Apr 2021
Accepted
17 Jun 2021
First published
22 Jun 2021

Nanoscale, 2021,13, 12865-12873

Interaction of serum proteins with SARS-CoV-2 RBD

Y. Yin, Y. Sheng, M. Wang, Y. Ma and H. Ding, Nanoscale, 2021, 13, 12865 DOI: 10.1039/D1NR02687A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements