Intense photoluminescence from Cu-doped CdSe nanotetrapods triggered by ultrafast hole capture†
Abstract
Brightly photoluminescent Cu-doped CdSe nanotetrapods (NTPs) have been prepared by a modified hot injection method. Their photoluminescence (PL) has a quantum yield of 38% and decays slowly over a few microseconds, while the PL in undoped NTPs has a rather small quantum yield of 1.7% and decays predominantly in tens of picoseconds, with a minor component in the nanosecond time regime. PL spectra of doped NTPs are significantly Stokes shifted compared to the band edge (BE). Efficient PL quenching by a hole scavenger confirms the oxidation state of +I for the dopant ion and establishes hole capture by this ion to be the primary event that leads to the Stokes shifted PL. A fast decay of the photoinduced absorption band, along with a similar decay in PL, observed in a femtosecond optical gating experiment, yields a time constant of about a picosecond for the hole capture from the valence band (VB) by Cu+. The remarkably long PL lifetime in the doped NTPs is ascribed to the decrease in the overlap between the wavefunctions of the photogenerated electrons and the captured hole. Hot carrier relaxation processes, triggered by excitation at energies greater than the band gap, leave their signature in a rise time of few hundreds of femtoseconds, in the ground state bleach recovery kinetics. Hence, a complete picture of exciton dynamics in the doped NTPs has been obtained using ultrafast spectroscopic techniques working in tandem.