Rearrangement of protein structures on a gold nanoparticle surface is regulated by ligand adsorption modes†
Abstract
With development of the nanomedicine field and increasing hazards of exposure to nanobiological materials, research on the protein corona is urgently required. In particular, the understanding of the mechanism of structural changes of protein on a nanosurface should be improved. Herein, we focus on exploring the role of ligand adsorption modes (physiosorbed citrates or chemisorbed GSH) in the regulation of conformational rearrangement of three blood proteins (serum albumin, globulin, and fibrinogen) on the surface of gold nanoparticles. Through experimental measurements, protein adsorption features (thermodynamics, kinetics, adsorption orientation, and structural changes) were estimated. Molecular dynamics simulations further indicated that physiosorbed citrates could be gradually peeled off by approaching proteins and that the bare Au surface provided a stronger interface interaction than the chemisorbed GSH layer. Protein structure rearrangements were due to the reduction in protein internal energy, with an increase in H-bond formation involving a decrease in the α-helical content and an increase in the β-sheet content, to offset the high interfacial energy. Rearrangement of protein structures could occur either intramolecularly or intermolecularly. These findings enhanced our understanding of nano-protein interaction in the biological milieu and facilitate biomedical exploration of engineered nanomaterials.