Issue 4, 2021

A matrix targeted fluorescent probe to monitor mitochondrial dynamics

Abstract

Mitochondria are an indispensable organelle for energy production and regulation of cellular metabolism. The structural and functional alterations to mitochondria instigate pathological conditions of cancer, and aging-associated and neurodegenerative disorders. The normal functioning of mitochondria is maintained by quality control mechanisms involving dynamic fission, fusion, biogenesis and mitophagy. Under conditions of mitophagy and neurodegenerative diseases, mitochondria are exposed to different acidic environments and high levels of reactive oxygen species (ROS). Therefore stable molecular tools and methods are required to monitor the pathways linked to mitochondrial dysfunction and disease conditions. Herein, we report a far-red fluorescent probe (Mito-TG) with excellent biocompatibility, biostability, photostability, chemical stability and turn on emission for selective targeting of the mitochondrial matrix in different live cells. The probe was successfully employed for monitoring dynamic processes of mitophagy and amyloid beta (Aβ) induced mitochondrial structural changes.

Graphical abstract: A matrix targeted fluorescent probe to monitor mitochondrial dynamics

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2020
Accepted
22 Dec 2020
First published
22 Dec 2020

Org. Biomol. Chem., 2021,19, 801-808

A matrix targeted fluorescent probe to monitor mitochondrial dynamics

M. Ramesh, K. Rajasekhar, K. Gupta, V. Babagond, D. K. Saini and T. Govindaraju, Org. Biomol. Chem., 2021, 19, 801 DOI: 10.1039/D0OB02128H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements