Issue 11, 2021, Issue in Progress

PbO2 modified with TiO2-NTs composite materials with enhanced OER electrocatalytic activity for Zn electrowinning

Abstract

The high oxygen evolution overpotential of the Pb–Ag anode is one of the main reasons for the high energy consumption in Zn electrowinning. PbO2, owing to its high conductivity, good corrosion resistance and low cost, is widely used as an excellent coating material. In present research, a novel composite Ti/TiO2-NTs/PbO2 material was synthesized through a facile anodization, annealing, electrochemical reduction and galvanostatic deposition. The surface morphology, internal structure and the mechanisms of TiO2-NTs enhancing electrochemical performance were discussed. The results show that the self-organized high aspect ratio TiO2-NTs with diameter of ∼120 nm and length of ∼8 μm were obtained on Ti substrate. The Ti/TiO2-NTs/PbO2 composite material exhibits excellent oxygen evolution performance and good stability in Zn electrowinning simulation solution (50 g L−1 Zn2+, 150 g L−1 H2SO4) at 35 °C. Its oxygen evolution overpotential is only 630 mV under current density 50 mA cm−2, which is 332 m lower than that of Pb-0.76 wt% Ag (η = 962 mV) and only increases 22 mV after 5000 cycles of CV scanning. Its outstanding electrochemical performance is mainly ascribed to the introduction of TiO2-NTs in Pb(CH3COO)2 media since it refines the crystal grains, increases the electrochemical surface area, greatly reduces the charge transfer resistance (25.4 Ω cm2 to 2.337 Ω cm2) and enhances corrosion resistance. Therefore, the Ti/TiO2-NTs/PbO2 material prepared in Pb(CH3COO)2 medium may be an ideal anode for Zn electrowinning.

Graphical abstract: PbO2 modified with TiO2-NTs composite materials with enhanced OER electrocatalytic activity for Zn electrowinning

Article information

Article type
Paper
Submitted
04 Oct 2020
Accepted
27 Jan 2021
First published
03 Feb 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 6146-6158

PbO2 modified with TiO2-NTs composite materials with enhanced OER electrocatalytic activity for Zn electrowinning

C. Chen, X. Wang, R. Xu, Y. Zhang, S. Feng, A. Ju and W. Jiang, RSC Adv., 2021, 11, 6146 DOI: 10.1039/D0RA08448D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements