Issue 7, 2021, Issue in Progress

Ozonation enhancement of low cost double-stranded DNA binding dye based fluorescence measurement of total bacterial load in water

Abstract

We demonstrated the feasibility of using ozonation to enhance the performance of dsDNA binding dye SYBR Green I in the fluorescence measurement of total bacterial load in water. Unlike its membrane permeable but expensive equivalent such as SYTO82 dye, SYBR Green I is many times cheaper but membrane impermeable. Ozonation allowed SYBR Green I dye to permeate the membrane and bind with the dsDNA within by first breaching it. Using E. coli K12 bacteria at serial dilution ratios from 1/1 (980 CFU mL−1) to 1/200, we achieved corresponding quantification from 618.7 ± 9.4 to 68.0 ± 1.9 RFU (100 to 11.00% normalized RFU). In comparison, plate counting and optical density measurement were only able to quantify up till a serial dilution ratio of 1/50 (40 CFU mL−1 and 0.0421, respectively). Most importantly with ozonation, the sensitivity of SYBR Green I dye based fluorescence measurement was improved by ∼140 to 210% as compared to that without ozonation. Given its low electrical power consumption, lab-on-chip compatibility and reagent-less nature, ozonation is highly compatible with portable fluorimeters to realize low-cost monitoring of total bacterial load in water.

Graphical abstract: Ozonation enhancement of low cost double-stranded DNA binding dye based fluorescence measurement of total bacterial load in water

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2020
Accepted
05 Jan 2021
First published
21 Jan 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 3931-3941

Ozonation enhancement of low cost double-stranded DNA binding dye based fluorescence measurement of total bacterial load in water

J. Choi, B. Chua and A. Son, RSC Adv., 2021, 11, 3931 DOI: 10.1039/D0RA08742D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements