Issue 15, 2021, Issue in Progress

Scale-up experiments of SO2 removal and the promoting behavior of NO in moving beds at medium temperatures

Abstract

The dry flue gas desulfurization (FGD) method was studied, which is a part of the integrated removal of multi-pollutants at medium temperatures. Although dry flue gas treatment is a simple and effective method, it is still a highly empirical-led application technology. A superior desulfurization adsorbent, fine powder of NaHCO3 (hereinafter called fine NaHCO3), was selected by scale-up experiments. A deep understanding of the reaction process and mechanism is then explored, which helps the further optimization of dry desulfurization. Based on the multi-factor experiments for NaHCO3, the effect mechanism of NO on desulfurization using NaHCO3 is also proposed. The conversion of SO32− → SO42− is promoted by the existence of NO. Therefore, a slight decline can be found. According to the influences of the SO2 concentration and the residence time, it is concluded that the diffusion of SO2 into the channel of NaHCO3 is the rate-limiting step. Impressively, the reaction process of reactants was clearly studied by in situ FTIR spectroscopy to determine the whole process. Moreover, the recycling of NaHCO3 is the main direction for reducing adsorbent consumption in the next step. The predictable insights are beneficial for profoundly understanding the gas composition synergetic interaction for the SO2 removal by the dry treatment using NaHCO3.

Graphical abstract: Scale-up experiments of SO2 removal and the promoting behavior of NO in moving beds at medium temperatures

Article information

Article type
Paper
Submitted
02 Dec 2020
Accepted
12 Feb 2021
First published
26 Feb 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 8846-8856

Scale-up experiments of SO2 removal and the promoting behavior of NO in moving beds at medium temperatures

S. Ma, X. Bie, C. Gong, B. Qu and D. Liu, RSC Adv., 2021, 11, 8846 DOI: 10.1039/D0RA10164H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements