Issue 16, 2021, Issue in Progress

Symbiotic composite composed of MoS2 and pelagic clay with enhanced disinfection efficiency

Abstract

Molybdenum disulfide (MoS2) has attracted increasing attention as a promising photocatalyst. In addition to its application in photocatalytic hydrogen production and pollutant degradation, MoS2 is also used in water disinfection. However, its poor disinfection performance limits its practical utility. Herein, we prepared a symbiotic composite composed of MoS2 and pelagic clay (MoS2/PC) as a photocatalyst for water disinfection. The composite achieved a high disinfection rate of 99.95% to Escherichia coli (E. coli) under visible light illumination, which is significantly higher than that of bulk MoS2 (61.87%). Characterization shows that abundant hydroxyl groups in illite/montmorillonite (I/M) formed during hydrothermal synthesis of MoS2, which contributed to the enhanced disinfection activity. Those hydroxyl groups can attract photogenerated holes through electrostatic attraction, and facilitate the separation of photogenerated charge carriers, thereby enhancing the disinfection activity. Moreover, the good hydrophilicity of pelagic clay improves the dispersity of MoS2 in water, which is beneficial for its utility in aqueous solutions. In addition, the symbiotic structure restricts the growth and aggregation of MoS2 nanosheets and shortens the diffusion distance of charge carriers to the material surface, further reducing the recombination of electrons and holes. This study provides a way to improve the disinfection activity of MoS2 and also sheds light on high value-added utilization of pelagic clay.

Graphical abstract: Symbiotic composite composed of MoS2 and pelagic clay with enhanced disinfection efficiency

Supplementary files

Article information

Article type
Paper
Submitted
01 Jan 2021
Accepted
11 Feb 2021
First published
04 Mar 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 9621-9627

Symbiotic composite composed of MoS2 and pelagic clay with enhanced disinfection efficiency

Q. Sun, Y. Liu, Z. Liu, G. Huang, S. Yuan, G. Yang, K. Wang, P. Zhang and N. Li, RSC Adv., 2021, 11, 9621 DOI: 10.1039/D1RA00008J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements