Issue 17, 2021

Hybrid structure of MWCNT/ferrite and GO incorporated composites for microwave shielding properties and their practical applications

Abstract

To eliminate the increasing adverse effects of electromagnetic pollution in everyday life, the shielding abilities of ferrite nanoparticles, multiwalled carbon nanotubes, and graphene oxide based hybrid composites have been investigated. The conceivable applications of the best investigated shielding composite samples on wearable and construction materials were investigated. Zinc substituted nickel and cobalt ferrite nanoparticles were synthesized using a sol–gel method with average crystallite size of 15–20 nm and incorporated with MWCNT and MWCNT–GO in a 1 : 1 weight ratio. Detailed investigations have been done on the prepared nano-composites by using X-ray diffraction, scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis, magnetic hysteresis loops, and vector network analysis. The microwave shielding capacity of the multiwalled carbon nanotube-zinc doped cobalt ferrite–graphene oxide hybrid composite was significantly enhanced up to 81.6 dB for the thickness of 2.4 mm in the X-band frequency region. Such a high SE indicates attenuation of the entire incoming EM radiation, which corroborates the potential of these materials in terms of high efficiency, tuneable, stable, and lightweight shielding applications. The synthesized MWCNT–CZFO–GO nanocomposite was used as an absorbent and was incorporated with cotton fabric, camouflage fabric, cement, and gypsum for high-efficiency daily life radiation shielding applications. These incorporated shielding samples (52.3 dB for cement, 31.4 dB for gypsum, 40.8 dB for camouflage fabric, and 28.6 dB for cotton fabric) showed a high attenuation capacity with more than 99.999% attenuation of the incident EM radiation establishing a promising behaviour to neutralize the harmful effects of radiation in day-to-day life.

Graphical abstract: Hybrid structure of MWCNT/ferrite and GO incorporated composites for microwave shielding properties and their practical applications

Supplementary files

Article information

Article type
Paper
Submitted
10 Feb 2021
Accepted
01 Mar 2021
First published
05 Mar 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 9775-9787

Hybrid structure of MWCNT/ferrite and GO incorporated composites for microwave shielding properties and their practical applications

S. Kumar, R. Walia, A. Kumar and V. Verma, RSC Adv., 2021, 11, 9775 DOI: 10.1039/D1RA01129D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements