Issue 26, 2021

A depth-suitable and water-stable trap for CO2 capture

Abstract

In terms of CO2 capture and storage (CCS), it is highly desired to substitute of high efficiency process for the applied one which is far from the ideal one. Physical processes cannot capture CO2 effectively, meanwhile CO2 desorption is energy-intensive in chemical processes. Herein, a depth-suitable and water-stable trap for CO2 capture was discovered. Carboxylates can react with polybasic acid roots by forming united hydrogen bonds. Carboxylate ionic liquid (IL) aqueous solutions can absorb one equimolar CO2 chemically under ambient pressure, and its CO2 desorption is easy, similar to that in physical absorption/desorption processes. When used as aqueous solutions, carboxylate ILs can replace alkanolamines directly in the applied CCS process, and the efficiency is enhanced significantly due to the low regenerating temperature. CO2 (or polybasic acids) can be used as a polarity switch for ILs and surfactants. A new method for producing carboxylate ILs is also proposed.

Graphical abstract: A depth-suitable and water-stable trap for CO2 capture

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2021
Accepted
12 Apr 2021
First published
28 Apr 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 15748-15752

A depth-suitable and water-stable trap for CO2 capture

Z. Zhang, S. Liu, J. Ma and T. Wu, RSC Adv., 2021, 11, 15748 DOI: 10.1039/D1RA01268A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements