Issue 31, 2021, Issue in Progress

Phenylphosphonate surface functionalisation of MgMn2O4 with 3D open-channel nanostructures for composite slurry-coated cathodes of rechargeable magnesium batteries operated at room temperature

Abstract

Spinel-type MgMn2O4, prepared by a propylene-oxide-driven sol–gel method, has a high surface area and structured bimodal macro- and mesopores, and exhibits good electrochemical properties as a cathode active material for rechargeable magnesium batteries. However, because of its hydrophilicity and significant water adsorption properties, macroscopic aggregates are formed in composite slurry-coated cathodes when 1-methyl-2-pyrrolidone (NMP) is used as a non-aqueous solvent. Functionalising the surface with phenylphosphonate groups was found to be an easy and effective technique to render the structured MgMn2O4 hydrophobic and suppress aggregate formation in NMP-based slurries. This surface functionalisation also reduced side reactions during charging, while maintaining the discharge capacity, and significantly improved the coulombic efficiency. Uniform slurry-coated cathodes with active material fractions as high as 93 wt% can be produced on Al foils by this technique employing carbon nanotubes as an electrically conductive support. A coin-type full cell consisting of this slurry-coated cathode and a magnesium alloy anode delivered an initial discharge capacity of ∼100 mA h g−1 at 25 °C.

Graphical abstract: Phenylphosphonate surface functionalisation of MgMn2O4 with 3D open-channel nanostructures for composite slurry-coated cathodes of rechargeable magnesium batteries operated at room temperature

Article information

Article type
Paper
Submitted
02 Apr 2021
Accepted
19 May 2021
First published
26 May 2021
This article is Open Access
Creative Commons BY license

RSC Adv., 2021,11, 19076-19082

Phenylphosphonate surface functionalisation of MgMn2O4 with 3D open-channel nanostructures for composite slurry-coated cathodes of rechargeable magnesium batteries operated at room temperature

K. Kajihara, D. Takahashi, H. Kobayashi, T. Mandai, H. Imai and K. Kanamura, RSC Adv., 2021, 11, 19076 DOI: 10.1039/D1RA02598H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements