Ultralong NiSe nanowire anchored on graphene nanosheets for enhanced electrocatalytic performance of triiodide reduction†
Abstract
Like their higher-dimensional counterparts, nanowire structures possess desirable features for electrocatalysis applications. In this study, ultralong NiSe nanowires (of diameters 50–150 nm and length 20 μm) were successfully anchored onto graphene nanosheets (NiSe NW/RGO). The NiSe nanowires were coated with a thick (∼10 nm) disordered surface replete with active sites. Benefiting from the fast charge-transfer channels and plentiful electroactive sites on the NiSe nanowires, in synergy with the high electroactive surface and electrical conductivity of the graphene nanosheets, the optimized NiSe NW/RGO exhibited a remarkably higher electrocatalytic activity than NiSe nanowires and typical Pt counter-electrodes (CEs). NiSe NW/RGO also exhibited the low charge-transfer resistance of 1.64 Ω cm2 and delivered a higher power conversion efficiency (PCE = 7.99%) than Pt CEs (PCE = 7.76%).