Issue 46, 2021

Green route for ammonium nitrate synthesis: fertilizer for plant growth enhancement

Abstract

Soil fertility management is of great importance for farmers. The use of synthetic nitrogen (N)-fertilizer increased by 20 fold in the last 50 years to feed the increasingly hungry population. This study aims to enrich the plant soil with nitrogen content (NH4NO3 fertilizer in soil) using the low-temperature and low-pressure plasma [without H2 and catalyst]. Subsequently, we used plasma N-enriched soil for plant (radish and tomato) growth. We investigated the germination percentage, seedling growth, seedling weight, phytohormones and antioxidant activity of radish and tomato plants after treatment with plasma N-enriched soil and compared with control soil and soil + commercial N-fertilizer. The plasma N-enriched soil treatment results in significant growth enhancement for both radish and tomato plants. Further, substantial changes in phytohormone and antioxidant levels were observed for the plants grown in plasma N-enriched soil compared to control soil and soil + commercial N-fertilizer. The energy consumption (EC) for total N-fixation was 12 MJ mol−1. EC for ammonia and nitrate fixation was 17 and 41 MJ mol−1, respectively, without H2 gas. Further to understand the plasma chemistry, we performed 1D simulation using COMSOL Multiphysics® software. This study showed that direct N-fixation in the soil by plasma could be used as fertilizer for the plants and open a new window for future decentralized N-fertilizer production at the farm site.

Graphical abstract: Green route for ammonium nitrate synthesis: fertilizer for plant growth enhancement

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2021
Accepted
11 Aug 2021
First published
23 Aug 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 28521-28529

Green route for ammonium nitrate synthesis: fertilizer for plant growth enhancement

P. Attri, K. Koga, T. Okumura, N. Takeuchi and M. Shiratani, RSC Adv., 2021, 11, 28521 DOI: 10.1039/D1RA04441A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements