A microwave radiation-enhanced Fe–C/persulfate system for the treatment of refractory organic matter from biologically treated landfill leachate†
Abstract
In this study, a microwave (MW) radiation enhanced Fe–C/PS system was used to treat refractory organic matter in biologically-treated landfill leachate. The effects of important influencing factors on the refractory organic matter in biologically treated landfill leachate were explored, and the main reactive oxygen species produced in the system were verified. The mechanism by which humus was degraded was investigated by analyzing effectiveness of organics removal in different systems, and comparative analysis was conducted on the Fe–C materials before and after the reaction. The results showed that degradation capacity and reaction rate of the system could be improved with an increase in the Fe–C/PS dosage and MW power, while initial acidic conditions were also conducive to the degradation of organic matter. Under the conditions of an Fe–C of 1 g L−1, PS dosage of 30 mM, MW power of 240 W, and reaction time of 10 min, the UV254, TOC, and CN removal efficiencies were 51.48%, 94.56%, and 51.59%, respectively. In the MW/Fe–C/PS system, a large amount of and a small amount of ˙OH were generated by the thermal activation of PS to remove organic matter. The removal efficiency of organic matter could be further improved via the homogeneous catalytic oxidation and heterogeneous adsorption catalytic oxidation of Fe–C materials. In addition, the MW/Fe–C/PS system was effective for removing refractory organic matter from the leachates from four typical treatment systems: DTRO, SAARB, MBR, and NF. The MW/Fe–C/PS system has the potential to be widely applied for the treatment of landfill leachate.