Issue 55, 2021, Issue in Progress

High pressure as a novel tool for the cationic ROP of γ-butyrolactone

Abstract

In this study, we report the acid-catalyzed and high pressure assisted ring-opening polymerization (ROP) of γ-butyrolactone (GBL). The use of a dually-catalyzed approach combining an external physical factor and internal catalyst (trifluoromethanesulfonic acid (TfOH) or p-toluenesulfonic acid (PTSA)) enforced ROP of GBL, which is considered as hardly polymerizable monomer still remaining a challenge for the modern polymer chemistry. The experiments performed at various thermodynamic conditions (T = 278–323 K and p = 700–1500 MPa) clearly showed that the high pressure supported polymerization process led to obtaining well-defined macromolecules of better parameters (Mn = 2200–9700 g mol−1; Đ = 1.05–1.46) than those previously reported. Furthermore, the parabolic-like dependence of both the molecular weight (MW) and the yield of obtained polymers on variation in temperature and pressure at either isobaric or isothermal conditions was also noticed, allowing the determination of optimal conditions for the polymerization process. However, most importantly, this strategy allowed to significantly reduce the reaction time (just 3 h at room temperature) and increase the yield of obtained polymers (up to 0.62 gPGBL/gGBL). Moreover, despite using a strongly acidic catalyst, synthesized polymers remained non-toxic and biocompatible, as proven by the cytotoxicity test we performed in further analysis. Additional investigation (including MALDI-TOF measurements) showed that the catalyst selection affected not only MW and yield but also the linear/cyclic form content in obtained macromolecules. These findings show the way to tune the properties of PGBL and obtain polymer suitable for application in the biomedical industry.

Graphical abstract: High pressure as a novel tool for the cationic ROP of γ-butyrolactone

Article information

Article type
Paper
Submitted
11 Aug 2021
Accepted
03 Oct 2021
First published
28 Oct 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 34806-34819

High pressure as a novel tool for the cationic ROP of γ-butyrolactone

R. Bernat, P. Maksym, M. Tarnacka, K. Malarz, A. Mrozek-Wilczkiewicz, T. Biela, S. Golba, E. Kamińska, M. Paluch and K. Kamiński, RSC Adv., 2021, 11, 34806 DOI: 10.1039/D1RA06081C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements