Issue 58, 2021

Solvothermal synthesis of Nb-doped TiO2 nanoparticles with enhanced sonodynamic effects for destroying tumors

Abstract

Titania (TiO2) nanomaterials have been proved to be biocompatible sonosensitizers for sonodynamic therapy (SDT) of various cancer cells, while they suffer from weak sonodynamic effects due to fast combination of excited carriers. In this work, to improve the therapeutic efficiency, we prepared PEGylated Nb-doped TiO2 (TiO2−x:Nb) nanoparticles by a simple solvothermal method and a subsequent surface modification process. The TiO2−x:Nb nanoparticles exhibited an average size of 11 nm and a polydisperse index of 0.12. The Nb doping had no obvious effect on the phase of TiO2 matrixes but released electrons to the conduction band of TiO2, resulting in high concentrations of deficiencies. As a result, the TiO2−x:Nb nanoparticles exhibited a higher efficiency of singlet oxygen (1O2) generation than that of pure TiO2 nanoparticles upon ultrasound irradiation. Importantly, the TiO2−x:Nb nanoparticles had high biocompatibility similar to pure TiO2 nanoparticles, while they could efficiently produce cytotoxic 1O2 to destroy cancer cells in vitro in comparison to the partially destroyed cancer cells by pure TiO2 nanoparticles upon ultrasound irradiation. More importantly, the TiO2−x:Nb nanoparticles displayed obvious tumor cellular injury in tumor-bearing mice in vivo through high SDT effects. Therefore, the synthesized PEGylated TiO2−x:Nb nanoparticles in this study exhibited higher therapeutic effects of SDT than that of the pure TiO2 nanoparticles, and the doping strategy would provide some insights for tuning traditional weak sonosensitizers into efficient ones.

Graphical abstract: Solvothermal synthesis of Nb-doped TiO2 nanoparticles with enhanced sonodynamic effects for destroying tumors

Supplementary files

Article information

Article type
Paper
Submitted
31 Aug 2021
Accepted
17 Oct 2021
First published
17 Nov 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 36920-36927

Solvothermal synthesis of Nb-doped TiO2 nanoparticles with enhanced sonodynamic effects for destroying tumors

W. Sun, X. Dong, P. Huang, J. Shan, L. Qi and J. Zhou, RSC Adv., 2021, 11, 36920 DOI: 10.1039/D1RA06548C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements