Issue 3, 2021

Reactive crystallization: a review

Abstract

Reactive crystallization is not new, but there has been recent growth in its use as a means of improving performance and sustainability of industrial processes. This review examines phenomena and processes in which reaction and crystallization are coupled in the production of a desired chemical species. Coverage includes fundamental phenomena, such as solubility, supersaturation, crystal nucleation and growth, and chemical kinetics. Systems examined are divided into two groups, those best described as undergoing ionic reactions (including neutralizations), which have near instantaneous rates and result in the formation of ionic bonds, and those undergoing covalent reactions in which the key step occurs at measurable rates and results in the formation of covalent bonds. Discussion of the latter category also includes the impact of catalysis. Examples of a variety of reactions and applications are enumerated, and special attention is given to the utility of reactive crystallization in chiral resolution. Integration of reactive crystallization into process design, including both batch and continuous operations, and the development and efficacy of modeling, monitoring and control are reviewed. Finally, a perspective addressing needs to advance the usefulness and applications of reactive crystallization is included.

Graphical abstract: Reactive crystallization: a review

Supplementary files

Article information

Article type
Review Article
Submitted
29 Jun 2020
Accepted
16 Nov 2020
First published
16 Nov 2020

React. Chem. Eng., 2021,6, 364-400

Author version available

Reactive crystallization: a review

M. A. McDonald, H. Salami, P. R. Harris, C. E. Lagerman, X. Yang, A. S. Bommarius, M. A. Grover and R. W. Rousseau, React. Chem. Eng., 2021, 6, 364 DOI: 10.1039/D0RE00272K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements