Issue 11, 2021

Metal-free C(sp3)–H functionalization of sulfonamides via strain-release rearrangement

Abstract

With the increasing awareness of sustainable chemistry principles, the development of an efficient and mild strategy for C(sp3)–H bond activation of nitrogen-containing compounds without the utilization of any oxidant and metal is still highly desired and challenging. Herein, we present a metal-free reaction system that enables C–H bond functionalization of aliphatic sulfonamides using DABCO as a promoter under mild conditions, affording a series of α,β-unsaturated imines in good yields with high selectivities. This protocol tolerates a broad range of functionalities and can serve as a powerful synthetic tool for the late-stage modification of complex compounds. More importantly, control experiments and detailed DFT calculations suggest that this process involves [2 + 2] cyclization/ring-cleavage reorganization, which opens up a new platform for the establishment of other related reorganization reactions.

Graphical abstract: Metal-free C(sp3)–H functionalization of sulfonamides via strain-release rearrangement

Supplementary files

Article information

Article type
Edge Article
Submitted
02 Dec 2020
Accepted
17 Jan 2021
First published
22 Jan 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 4034-4040

Metal-free C(sp3)–H functionalization of sulfonamides via strain-release rearrangement

J. Hu, X. Yang, S. Shi, B. Cheng, X. Luo, Y. Lan and T. Loh, Chem. Sci., 2021, 12, 4034 DOI: 10.1039/D0SC06603F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements