Issue 18, 2021

Three-membered cyclic digermylenes stabilised by an N-heterocyclic carbene

Abstract

Treatment of potassium salts of silole dianions with donor stabilised germanium dichlorides gave the anticipated silagermafulvenylidenes R2Si = Ge(Do) (R2Si = 1-silacyclopentadiendiyl, Do = N-heterocyclic carbene (NHC)) only as transient intermediates in a side reaction. They were detected by NMR spectroscopy and, in one case, the formal dimer, 2,4-disila-1λ3,3λ3-digermetane, was isolated. The main products of these reactions are sila-bis-λ3-germiranes, i.e. directly interconnected digermylenes that are part of a three-membered ring. The structural data, supported by the results of density functional calculations confirm the digermylene nature of these products with a long inner cyclic Ge–Ge bond that decreases the inherent high ring strain in silagermiranes.

Graphical abstract: Three-membered cyclic digermylenes stabilised by an N-heterocyclic carbene

Supplementary files

Article information

Article type
Edge Article
Submitted
17 Feb 2021
Accepted
19 Mar 2021
First published
22 Mar 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 6287-6292

Three-membered cyclic digermylenes stabilised by an N-heterocyclic carbene

Z. Dong, J. M. Winkler, M. Schmidtmann and T. Müller, Chem. Sci., 2021, 12, 6287 DOI: 10.1039/D1SC00956G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements