Issue 27, 2021

Stereoselective tandem iridium-catalyzed alkene isomerization-cope rearrangement of ω-diene epoxides: efficient access to acyclic 1,6-dicarbonyl compounds

Abstract

The Cope rearrangement of 2,3-divinyloxiranes, a rare example of epoxide C–C bond cleavage, results in 4,5-dihydrooxepines which are amenable to hydrolysis, furnishing 1,6-dicarbonyl compounds containing two contiguous stereocenters at the 3- and 4-positions. We employ an Ir-based alkene isomerization catalyst to form the reactive 2,3-divinyloxirane in situ with complete regio- and stereocontrol, which translates into excellent control over the stereochemistry of the resulting oxepines and ultimately to an attractive strategy towards 1,6-dicarbonyl compounds.

Graphical abstract: Stereoselective tandem iridium-catalyzed alkene isomerization-cope rearrangement of ω-diene epoxides: efficient access to acyclic 1,6-dicarbonyl compounds

Supplementary files

Article information

Article type
Edge Article
Submitted
10 May 2021
Accepted
03 Jun 2021
First published
09 Jun 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 9328-9332

Stereoselective tandem iridium-catalyzed alkene isomerization-cope rearrangement of ω-diene epoxides: efficient access to acyclic 1,6-dicarbonyl compounds

R. Suresh, I. Massad and I. Marek, Chem. Sci., 2021, 12, 9328 DOI: 10.1039/D1SC02575A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements