Issue 33, 2021

Synthesis of a carborane-substituted bis(phosphanido) cobaltate(i), ligand substitution, and unusual P4 fragmentation

Abstract

Oxidative addition of the P–P single bond of an ortho-carborane-derived 1,2-diphosphetane (1,2-C2(PMes)2B10H10) (Mes = 2,4,6-Me3C6H2) to cobalt(−I) and nickel(0) sources affords the first heteroleptic complexes of a carborane-bridged bis(phosphanido) ligand. The complexes also incorporate labile ligands suitable for further functionalisation. Thus, the cobalt(I) complex [K([18]crown-6)][Co{1,2-(PMes)2C2B10H10}(cod)] (cod = 1,5-cyclooctadiene) bearing a labile cyclooctadiene ligand undergoes facile ligand exchange reactions with isonitriles and tert-butyl phosphaalkyne with retention of the bis(phosphanido) ligand. However, in the reaction with one equivalent of P4, the electron-rich bis(phosphanido) moiety abstracts a single phosphorus atom with formation of a new P3 chain, while the remaining three P atoms derived from P4 form an η3-coordinating cyclo-P3 ligand. In contrast, when the same reaction is performed with two equivalents of the cobalt(I) complex, a dinuclear product is formed which features an unusual P4 chain in its molecular structure.

Graphical abstract: Synthesis of a carborane-substituted bis(phosphanido) cobaltate(i), ligand substitution, and unusual P4 fragmentation

Supplementary files

Article information

Article type
Edge Article
Submitted
31 May 2021
Accepted
07 Jul 2021
First published
07 Jul 2021
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2021,12, 11225-11235

Synthesis of a carborane-substituted bis(phosphanido) cobaltate(I), ligand substitution, and unusual P4 fragmentation

P. Coburger, J. Leitl, D. J. Scott, G. Hierlmeier, I. G. Shenderovich, E. Hey-Hawkins and R. Wolf, Chem. Sci., 2021, 12, 11225 DOI: 10.1039/D1SC02948G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements